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Nonlinear System Identification by
Gustafson–Kessel Fuzzy Clustering and

Supervised Local Model Network Learning
for the Drug Absorption Spectra Process

Luka Teslić, Benjamin Hartmann, Oliver Nelles, and Igor Škrjanc

Abstract— This paper deals with the problem of fuzzy non-
linear model identification in the framework of a local model
network (LMN). A new iterative identification approach is pro-
posed, where supervised and unsupervised learning are combined
to optimize the structure of the LMN. For the purpose of fitting
the cluster-centers to the process nonlinearity, the Gustafsson–
Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is
applied. In combination with the LMN learning procedure, a new
incremental method to define the number and the initial locations
of the cluster centers for the GK clustering algorithm is proposed.
Each data cluster corresponds to a local region of the process
and is modeled with a local linear model. Since the validity
functions are calculated from the fuzzy covariance matrices of
the clusters, they are highly adaptable and thus the process can
be described with a very sparse amount of local models, i.e.,
with a parsimonious LMN model. The proposed method for
constructing the LMN is finally tested on a drug absorption
spectral process and compared to two other methods, namely,
Lolimot and Hilomot. The comparison between the experimental
results when using each method shows the usefulness of the
proposed identification algorithm.

Index Terms— Gustafson–Kessel fuzzy clustering, local
model networks, nonlinear system identification, (un)supervised
learning.

I. INTRODUCTION

THE local model network (LMN) approach for the purpose
of identifying nonlinear static and dynamic processes and

model-based control has generated a great deal of research
interest. LMN models describe the process nonlinearity with
a definite number of local submodels. Architectures based on
the interpolation of local models have, in the past few decades,
attracted more and more interest for the purpose of modeling
nonlinear dynamic systems and also for approximating static
functions. Local linear models allow the transfer of many
parts of the mature linear theory to the nonlinear world. The
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boom in local linear model structures is also a consequence
of recent advances in the area of convex optimization and the
development of efficient algorithms for the solution of linear
matrix inequalities.

According to [1], a LMN approach has the potential to
allow conventional modeling techniques and established linear
control methods to be applied within an inherently nonlinear
framework, with the advantage of transparency of operation
and the capability to readily comprise a priori knowledge. In
[2]–[9], various domains where the LMNs can be utilized are
provided. Product-space clustering algorithms, such as Gath–
Geva [10], and heuristic tree-construction algorithms, such
as Cart [11] and Lolimot [12], are two of the most popular
partitioning strategies for defining the validity regions of local
models.

Neural networks (NNs), the radial basis function network
(RBFN), and the Gaussian process (GP) model are also
very often applied for the purpose of system modeling.
A major limitation of the NNs is the time-consuming training
process [13]. The main drawbacks of the NNs [14], which are
used to model nonlinear systems for control, are the trouble-
some “curse of dimensionality” and the lack of transparency.
According to [15], the main advantage of the GP model
in comparison with the NNs is an estimation of the model
uncertainty. But the GP model is computationally demanding
and nontransparent, and to cope with these two difficulties, a
local linear GP model network, where the GP prior approach
is combined with the LMN approach, has been proposed
[15]. In [16], a hybrid linear/nonlinear training algorithm for
feedforward NNs is presented, which is especially useful for
the LMN architecture with large linear to nonlinear parameter
ratio. A major advantage of the LMN over the RBFN [14] is
a considerable reduction in the number of local models and
the increased transparency of the model.

Network optimization, where the optimal number of local
linear models, their parameters, and the validity functions must
be found, is the core problem to be solved in the process
of system modeling with the LMN. Often, the goal is to
find a parsimonious model of the system. A parsimonious
network structure in the framework of fuzzy local linearization
modeling was achieved in [17] by applying a modified adap-
tive spline modeling algorithm for defining the membership
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Fig. 1. Principle of LMNs.

functions. In [18], a parsimonious RBFN is produced by simul-
taneously determining the network structure and optimizing
the parameters.

In this paper, fuzzy clustering forms the basis for optimizing
the structure of the LMN. In most of the fuzzy clustering
algorithms, an important problem is that the optimum number
of clusters [19] and their initial values (e.g., cluster centers)
must be estimated. In [20], each data point is considered as
a potential cluster center at the beginning of the algorithm.
The optimum number of clusters can be determined, e.g., by
applying cluster validity index [21]. A wide variety of fuzzy
clustering algorithms can be found in the literature. In [22],
some popular fuzzy clustering methods are reviewed. One of
the most often used method is fuzzy C-means [23], [24]. Fuzzy
probabilistic C-means (PCM) clustering is derived from the
PCM method [25] and two other approaches are fuzzy clus-
tering applying t-distributions [26] and fuzzy compactness and
separation [27]. In [28], the comparison between kernel-based
fuzzy clustering and fuzzy clustering is given. In this paper,
the purpose of the clustering is to find fuzzy subsets of data
from a large set of process data, where each subset corresponds
to a certain local linear region of the nonlinear process. The
ability to find local hyperplanes in the product space makes the
Gustafson–Kessel (GK) fuzzy clustering [29] very convenient
for this purpose. Each cluster obtained with the GK algorithm
therefore corresponds to a certain local linear model of the
LMN. The basic GK fuzzy clustering solution is very sensitive
to the choice of the number and the initial locations of cluster
centers. This issue is addressed in this paper by increasing the
number of clusters and simultaneously determining the initial
locations of the cluster centers, which arise from splitting
the worst modeled cluster. The number of clusters increases
until a predefined level of the LMN model accuracy is
achieved.

A fuzzy nonlinear model-identification technique in the
framework of a LMN is proposed in this paper. Here, super-
vised and unsupervised learning are combined in order to
optimize the structure of the LMN. The main contributions
of this paper are the following.

1) A new iterative and incremental approach for defining
the number and the initial locations of cluster centers

for the GK fuzzy clustering method is proposed in
connection to the LMN learning procedure.

2) Highly adaptable validity functions are obtained by
applying the GK fuzzy clustering. The obtained validity
functions adapt to the local linear regions of the nonlin-
ear process. For this reason, the nonlinear process can
be described with a very sparse amount of local models,
which leads to a parsimonious LMN structure.

3) Experimental results of identifying the model of the 3-D
drug absorption spectra process using the proposed
method and two other methods for constructing the
LMNs, i.e., Lolimot [12] and Hilomot [30], are pre-
sented and compared.

This paper is structured as follows. In Section II, a LMN
model is defined and some strategies for partitioning the input
space are discussed. Section III describes the initialization
part, the iterative part, and the final part of the proposed
fuzzy nonlinear identification technique. In Section IV, the
experimental results of identifying the LMN model of the drug
absorption spectra process using the proposed approach and
two other methods are compared. This paper is concluded in
Section V.

II. LMNS

The output ẑ(ui ) of a LMN can be calculated as the
interpolation of nc local model outputs ẑ j (ui ), j = 1, . . . , nc,
see Fig. 1

ẑ(ui ) =
nc∑

j=1

ẑ j (ui )� j (ui ) (1)

where ui = [ui,1, . . . , ui,p ] denotes the i th sample or mea-
surement of the input vector and p denotes the number of
inputs to the system. � j (ui ) are the validity or weighting
functions that describe the regions where the local models are
valid. The validity functions define the contribution of each
local model to the LMN output. The validity functions are
smooth functions in the interval (0, 1], since here a smooth
transition (no switching) between the local models is desired.
For a reasonable interpretation of LMNs, the contributions of
all the local models must sum up to 100% everywhere in the
input space. It is therefore necessary that the validity functions
form a partition of unity

nc∑

j=1

� j (ui ) = 1, � j (ui ) > 0. (2)

The local models can, in principle, be chosen as an arbi-
trary type. Since in this paper their parameters are estimated
from the data, it is extremely beneficial to choose a linearly
parameterized model class. Polynomials of degree 1 are used
here for the local linear model structure, which is also by far
the most popular choice. Fig. 2(a) shows an example of a
LMN with three local linear models LM j ( j = 1, . . . , 3) and
the resulting superposition ẑ(u1). The corresponding validity
functions � j (ui,1) are shown in Fig. 2(b).

When the validity functions are determined, the parame-
ters of the local linear models can be easily and efficiently
estimated by local or global least-squares (LS) methods. The
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Fig. 2. LMN with three models. (a) Local models and the resulting
superposition. (b) Validity functions.

weighted LS method for parameter estimation was applied
in [31]. In [32], the differences and benefits of using particle
swarm optimization and expectation-maximization algorithm
for LMN learning are highlighted. In [33], a genetic learning
approach to the optimization of LMN structure is presented.

A. Partitioning Algorithm

The main difference between all the proposed algorithms
for constructing a LMN is the strategy of partitioning the
input space, where the validity regions and consequently the
parameters of the validity functions must be chosen. This
strategy determines the basic properties of both the LMN
learning procedure and the final structure of the LMN model.
The aim of optimizing the structure of the LMN [14] is to find
the optimal number of local linear models, their placement,
and the shape and the size of the validity functions. In [1],
a nonlinear optimization of the centers and widths of the
validity functions was performed by minimizing the LS cost
function.

Based on the heuristic tree-search algorithm of Cart [11],
many similar partitioning strategies, such as Lolimot [12], have
been proposed for LMNs, see also [34] and [35]. Their main
idea is to incrementally subdivide the input space by axes-
orthogonal cuts. By using these techniques, the undesirable
normalization side effects and the extrapolation behavior can
be improved in comparison with the clustering or data-based
strategies [36]. Their main drawback inherently lies in the
axes-orthogonal partitioning strategy: the performance of these
algorithms is likely to degrade more and more with increasing
dimensionality of the input space. They are therefore relatively
sensitive to the curse of dimensionality.

Product-space clustering strategies focus on the product
space that is jointly spanned by the inputs and the output,
which means that the dataset used in the clustering procedure
consists of the inputs and the output. In this paper, the proper-
ties of the GK fuzzy clustering are utilized to achieve an axes-
flexible partitioning of the input space. The GK algorithm [29]
is very often applied to search for hyper ellipsoids of equal
or different volumes. In Fig. 3, an example with one input
dimension and one output dimension is shown. The process is
modeled with three fuzzy clusters (nc = 3), where each cluster
( j = 1, . . . , 3) is defined by its center c j = [c j,u1 c j,z] and
the fuzzy covariance matrix. The fuzzy covariance matrix of
the j th fuzzy cluster P j ∈ R

(p+1)×(p+1) is defined as follows:

P j =
n∑

i=1

F2
j (di )

(
di − c j

)T (
di − c j

)
(3)

c1

c3
c2

u1

z

Fig. 3. Example for GK fuzzy clustering.

where F j (di ) defines the normalized membership degree of the
data vector di (i = 1, . . . , n) to the j th cluster. Each fuzzy
covariance matrix defines the directions and the variability
of the corresponding cluster’s data. By observing the fuzzy
covariance matrix [37], it is clear that the GK algorithm is
able to discover local hyperplanes in the product space by
forming ellipsoids with a very small extension in one direction,
see Fig. 3. The randomized initialization of the GK algorithm
makes the direct use of this algorithm sometimes difficult
and may prevent a unique solution in all cases. Another
disadvantage is that the optimal number of clusters nc and the
placement of the initial cluster centers for the GK algorithm
is not known a priori.

Each cluster found by the GK algorithm corresponds to
the local hyperplane in the product space and therefore also
to the local linear model in the framework of a LMN.
The size and direction of the cluster’s data, i.e., the size
and direction of a local linear region, is described with
the corresponding fuzzy covariance matrix. The information
obtained from the fuzzy covariance matrix is therefore very
useful for defining the validity region of a certain local linear
model.

Using the GK fuzzy clustering, the process of LMN learning
is not supervised. In this paper, supervised and unsupervised
learning are combined to construct the LMN for the purpose
of nonlinear model identification.

III. FUZZY NONLINEAR IDENTIFICATION

Here, a new method for defining the number and the
initial placement of the cluster centers for the GK fuzzy
clustering algorithm is proposed in connection with the LMN
construction. To optimize the structure of the LMN, a forward
regression approach [38] is adopted. In forward regression,
only two local models are assumed at the beginning of the
algorithm and the number of local models then increases with
respect to the complexity of the system.

In this paper, the proposed fuzzy nonlinear identification
approach is illustrated in the 3-D problem space. The approach
can analogously be applied in the 2-D case or generalized to
more than 3-D. The original dataset representing the measure-
ments from the static process is denoted as

D́ = [
x́, ý, ź

] =
⎡

⎣
x́1 ý1 ź1
· · · · · · · · ·
x́n ýn źn

⎤

⎦ (4)
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where x́i and ýi (i = 1, . . . , n) represent the input-space data
and źi represent the output data. n denotes the number of
process measurements. A LMN is then defined as

ẑ(úi ) =
nc∑

j=1

ẑi, j (úi )�́ j (úi ), i = 1, . . . , n

ẑi, j (úi ) = â j x́i + b̂ j ýi + ĉ j , úi = (x́i , ýi ) (5)

where úi = (x́i , ýi ), i = 1, . . . , n are the input-space data. â j ,
b̂ j , and ĉ j are the optimal parameters of the j th local linear
model (plane), and ẑi, j (úi ) is the output of the j th local linear
model. ẑ(úi ) is the overall output of the LMN.

A. Normalizing the Data

To deal with various sets of process data D́ (4), which corre-
spond to the different orders of magnitude of the output-space
data ź and the input-space data x́ and ý, the data D́ are first
centered and normalized. The fuzzy nonlinear identification is
then performed on the basis of the newly defined dataset D (6).
The result of the identification is recalculated to correspond
to the original data set D́ and, finally, local linear models
describing the nonlinear static process are found.

By subtracting the mean mx (or my , mz) (7) from the
elements of the vector x́ (or ý and ź) and by dividing the
obtained differences by the maximal absolute difference ρx (or
ρy and ρz ) (8), the original data D́ are centered and normalized
to obtain the data set D

D = [
x, y, z

] = [U, z] =
⎡

⎣
x1 y1 z1
· · · · · · · · ·
xn yn zn

⎤

⎦

=
⎡
⎢⎣

x́1−mx
ρx

ý1−my
ρy

ź1−mz
ρz

· · · · · · · · ·
x́n−mx

ρx

ýn−my
ρy

źn−mz
ρz

⎤
⎥⎦ (6)

mx = 1

n

n∑

i=1

x́i , my = 1

n

n∑

i=1

ýi , mz = 1

n

n∑

i=1

źi (7)

ρx = max(|x́1 − mx |, . . . , |x́n − mx |)
ρy = max(|ý1 − my |, . . . , |ýn − my |)
ρz = max(|ź1 − mz |, . . . , |źn − mz |). (8)

The operator | · | above denotes the absolute value, and the
operator max(·) denotes the maximum value of a vector.

B. Initialization of the Fuzzy Nonlinear Identification
Procedure

In this section, the initialization of the proposed fuzzy
nonlinear identification technique will be described. In the first
step of the identification procedure, the covariance matrix C
of the data D (6) is computed as

C = 1

n − 1
DT D. (9)

The unit eigenvectors and the corresponding eigenvalues of
the data covariance matrix C are computed with singular
value decomposition (SVD). The eigenvalues represent the
variances of the data D in the direction of the eigenvectors.

v2

c2,2
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|r2,1| � |r2,2| � q∗σ2,

Fig. 4. Defining the initial prototypes for the GK fuzzy clustering.

The unit eigenvector g with the largest variance σ 2 is used
as the measure for the direction of the main data expansion.
This eigenvector is scaled with the corresponding standard
deviation o = σ ∗ g to capture the majority of the data with
the two vectors ±o (Fig. 4). These two points could already
be used for the initial prototypes in the GK fuzzy clustering
process. The initial prototypes are then globally defined with
the described deterministic procedure. To extend the search
space when choosing initial prototypes, they can be placed
somewhere closely and randomly around the points ±o. Local
randomness is achieved by adding up the random vectors r1
and r2 to the already defined vectors ±o

v1 = o + r1, v2 = −o + r2. (10)

The vectors r1 and r2 (10) lie randomly somewhere on the
3-D sphere surfaces (Fig. 4)

r1 = f (σ, ϒ) = qσ ∗ (sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1)

r2 = f (σ, ϒ) = qσ ∗ (sin θ2 cos ϕ2, sin θ2 sin ϕ2, cos θ2)

(11)

where ϕ1, ϕ2 and θ1, θ2 are random angles drawn from the
standard uniform distribution ϒ on the open interval (0, 2π)
and (0, π), respectively. The spheres have the constant radius
q ∗ σ , which is proportional to the data standard deviation
σ and a predefined constant q . The range of possible values
for the constant is 0 ≤ q ≤ 0.5 and the typically chosen
values are q = 0.125 or q = 0.25. The factor q (11) is found
experimentally. In order to keep the good repeatability of the
proposed nonlinear model identification technique, the radii of
both spheres or the factor q should not be too large.

The data D (6) and their initial prototypes v1, v2 are the
input into the GK algorithm, which results in nc = 2 cluster
centers c1 and c2 (Fig. 4), the clusters’ membership functions
f1 and f2, and the clusters’ fuzzy covariance matrices P1
and P2.

With the deterministic procedure of calculating the unit
eigenvector and the corresponding standard deviation by using
the SVD, the initial prototypes placement is globally directed.
The prototypes are placed away from the data mean (coor-
dinate origin) to embrace the majority of the data D (6)
in the direction of the main data expansion. In order to
extend the search space in defining the initial prototypes
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(10), local random vectors lying on the sphere surfaces (11)
are added to the deterministically chosen eigenvectors. This
paradigm, where two initial prototypes are defined by the
globally dictated deterministic initialization followed by the
locally random initialization, is also kept in the iterative part
of the identification procedure (Fig. 4). There more local linear
models are defined to better describe the process nonlinearity.

If the dataset D́ (4) is not normalized, then due to possibly
different orders of the data magnitude according to the x́ , ý,
and ź coordinates, an ellipsoid surface must be considered in
(11). It is therefore more convenient to use the normalized
dataset D́ (4) for the nonlinear identification, since then the
sphere instead of the ellipsoid surface can be used.

C. Iterative Fuzzy Nonlinear Identification Procedure

This section describes the iterative part of the proposed
fuzzy nonlinear identification procedure. Here, the number of
clusters is increased until all the identified local models corre-
sponding to each cluster fit the modeled 3-D surface (Fig. 4)
well with respect to defined criteria or until a predefined
maximum number of loop iterations is reached. The iterative
part of the identification procedure is therefore executed in a
loop L.

First, the validity functions � j (ui ) ( j = 1, . . . , nc and i =
1, . . . , n) are calculated from the Gaussian functions μ j (ui )
as follows:

μ j (ui ) = e−γ ∗(ui−cu j )P
−1
u j (ui−cu j )

T
(12)

ui = (xi , yi ), i = 1, . . . , n

c j = (cx j , cy j , cz j ) ⇒ cu j = (cx j , cy j )

P j =
⎡

⎢⎣
σ 2

x j
σxy j σxz j

σyx j σ 2
y j

σyz j

σzx j σzy j σ 2
z j

⎤

⎥⎦ ⇒

Pu j =
[

σ 2
x j

σxy j

σyx j σ 2
y j

]
, j = 1, . . . , nc (13)

where ui (i = 1, . . . , n) are the input space data, cu j ( j =
1, . . . , nc) are the input space coordinates of the cluster centers
obtained in the last execution of the GK fuzzy-clustering
algorithm, and Pu j are the fuzzy covariance matrices of the
input space data. These matrices are the submatrices of the
fuzzy covariance matrices P j from the last execution of the
GK algorithm. γ is a factor that defines the crispness of the
Gaussian functions μ j (ui ) and consequently the sharpness
of the validity functions � j (ui ), i.e., normalized Gaussian
functions

� j (ui ) = μ j (ui )


nc
k=1μk(ui )

, i = 1, . . . , n, j = 1, . . . , nc. (14)

The normalization in the equation above is necessary to build
the partition of unity (2). The large factor γ (12) causes crisp
validity functions � j (ui ) (14). The range of possible values
for the constant is 0 < γ and the typically chosen values are
0.5, 1, or 2. How to choose the parameter γ will be discussed
in what follows.

The centers of the validity functions correspond to the
centers of the clusters. The size and the shape of each validity

function is defined with the fuzzy covariance matrix of the
corresponding cluster and with the Gaussian functions of the
neighboring clusters. With the fuzzy covariance matrix P j

(13), an arbitrary orientation and size of the clusters can be
described. The obtained validity functions � j (ui ) (14) are
therefore highly flexible in terms of adapting the validity
regions of the local linear models to the local linear regions
of the process. In this way an axes-flexible partitioning of the
input space is achieved.

The results of the last execution of the GK algorithm are
also the fuzzy membership functions f j (ui ) for all the clusters
( j = 1, . . . , nc). From all the data D (6), the data d̃k, j =
[x̃k, j , ỹk, j , z̃k, j ] = [ũk, j , z̃k, j ] (k = 1, . . . , m j ) and their
validity function values � j (ũk, j ) satisfying the criteria

f j (ui ) > δ (15)

where δ = 0.5, are found for each cluster ( j = 1, . . . , nc).
The data d̃k, j together with their validity function weights
� j (ũk, j ) correspond to the j th cluster, with respect to the
upper defined inequality. Fuzzy membership functions f j (ui ),
which form a partition of unity, are functions in the interval
(0, 1]. Therefore, at the intersection of the two neighboring
membership functions their value is approximately f j (ui ) =
0.5 [see Fig. 5(b)]. If the membership functions are soft, a
threshold value δ much lower than 0.5 causes that many data
points are captured in both neighboring sets d̃k, j and are
therefore considered twice in the modeling procedure. And
conversely, a threshold value δ much higher than 0.5 causes
that many data points between the two neighboring clusters
are discarded. However, if the membership functions f j (ui )
are crisp, this effect is not so evident and values higher than
0.5 can be chosen for the threshold. To consider the worst
case when soft membership functions occur, a threshold value
of δ = 0.5 is chosen here, since then almost no data between
the two neighboring clusters are considered twice or ignored
in the modeling procedure.

The 3-D local linear model (plane) weighted with the
validity function � j (ũk, j )

z̃k, j = (a j x̃k, j + b j ỹk, j + c j ) ∗ � j (ũk, j )

k = 1, . . . , m j , j = 1, . . . , nc (16)

where a j , b j , and c j are the parameters of the explicit plane
equation, is fitted to the j th cluster’s data d̃k, j (k = 1, . . . , m j )
by using the LS method. The above-defined system of the
m j linear equations with the three variables a j , b j , and c j

solved with the LS method results in the j th local linear model
parameters â j , b̂ j , and ĉ j .

The quality of each local linear model, which corresponds
to the cluster c j ( j = 1, . . . , nc), is estimated with the
standard deviation of the error between the linear model and
the cluster’s data d̃k, j = [x̃k, j , ỹk, j , z̃k, j ] as follows:

σe j =
√√√√ 1

m j − 1

m j∑

k=1

δ2
k, j

δk, j = x̃k, j cos α̂ j + ỹk, j cos β̂ j + z̃k, j cos γ̂ j − p̂ j . (17)
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α̂ j , β̂ j , γ̂ j , and p̂ j above are the parameters of the normal
plane equation converted from the explicit plane equation
parameters â j , b̂ j and ĉ j . δk, j (17) is the normal distance
(error) between the data point d̃k, j and the j th linear model
(plane).

If the standard deviation of the error σe j (17) is below the
threshold T (18) for all the clusters ( j = 1, . . . , nc), then
all the local linear models fit the corresponding subregion
of the process well. Then the iterative part of the fuzzy
nonlinear identification is completed, which is shown in the
next subsection. The termination threshold T (18) is defined
empirically according to the desired level of the final LMN
model accuracy. By setting a small threshold T , the final
number of all the local linear models nc is increased, which
means that the overall LMN model (5) becomes more complex
and more accurate. However, the value of the threshold T
should not be lower than the noise level of the normalized
process data.

If the standard deviation of the error σe j (17) is, for some
models, above the threshold T

σe j > T (18)

then these local linear models fit badly to the corresponding
cluster’s data. The cluster with the largest standard deviation
σe j has the worst local linear model. The data of this cluster
( j = w) is denoted as d̃k,w . To better describe the nonlinearity
of this data, the wth cluster is further split into two clusters,
each modeled with a new local linear model. Choosing the
worst modeled data cluster that has to be split is a supervised
operation in the LMN learning procedure. The cluster is split
with a procedure that is analogous to the already described
initialization part of the fuzzy nonlinear identification (Fig. 4).
There, the globally directed deterministic initialization for
the GK fuzzy clustering is followed by the locally random
initialization. Fig. 4 also shows the first step of the iterative
identification procedure, where the second (w = 2) cluster
is split into two new clusters. Two new initial prototypes are
placed away from the splitting cluster’s center cw to embrace
the majority of the splitting cluster’s data in the direction of
the cluster’s main data expansion

vw,1 = cw + ow + rw,1, ow = σw ∗ gw

vw,2 = cw − ow + rw,2. (19)

gw in the equation above denotes the unit eigenvector of the
fuzzy covariance matrix of the splitting cluster Pw ( j = w)
(13) which corresponds to the largest variance σ 2

w. The unit
eigenvector gw therefore indicates the direction of the main
data expansion of the splitting cluster. rw,1 = f (σw, ϒ) and
rw,2 = f (σw, ϒ) (11) and (19) are random vectors, which lie
randomly somewhere on the 3-D sphere surfaces (Fig. 4). The
spheres have a constant radius q ∗ σw , which is proportional
to the standard deviation of the splitting cluster’s data σw and
a constant q . The factor q has already been defined in the
initialization part of the identification procedure.

The centers of the clusters obtained with the iterative
GK algorithm are not accurate, but they are close to the
optimal cluster centers with respect to some tolerance region.

Deterministically defined initial prototypes for the GK clus-
tering cw ± ow (19) are defined on the basis of the splitting
cluster’s center cw , which is not accurate. The error of the
inaccurate center of the splitting cluster is, in each iteration
of the identification algorithm, therefore also reflected on the
deterministically defined initial prototypes cw ± ow. The error
of each splitting cluster’s center cw therefore has an influence
on the evolution of the iterative identification. To take this
error into account, the search space in choosing the two initial
prototypes for the GK clustering is, in the iterative part of
the identification algorithm, also extended by introducing a
local randomness with the two vectors rw,1 = f (σw, ϒ) and
rw,2 = f (σw, ϒ) (19).

The last execution of the GK algorithm results in nc cluster
centers c j . The splitting cluster’s data d̃k,w and their initial
prototypes vw,1 and vw,2 (19) are the input into the GK
algorithm, which results in two cluster centers cw,1 and cw,2
(Fig. 4). The original center of the splitting cluster cw is
replaced with the two new cluster centers cw,1 and cw,2

(c1, . . . , cw, . . . , cnc) → (v1, . . . , vw, vw+1, . . . , vncnew )

= (c1, . . . , cw,1, cw,2, . . . , cnc), ncnew = nc + 1. (20)

cw,1 and cw,2 together with the remaining cluster centers
c j ( j = 1, . . . , w − 1, w + 1, . . . , nc), that are not split,
form new initial prototypes v j ( j = 1, . . . , ncnew) for the
GK clustering and therefore the overall number of initial
prototypes is increased by one ncnew = nc + 1. The data
D and their new initial prototypes v j are the input into the
GK algorithm, which results in the new cluster centers c j ,
the cluster membership functions f j , and the clusters’ fuzzy
covariance matrices P j ( j = 1, . . . , ncnew). Using the GK
fuzzy clustering the LMN learning is not supervised. Fuzzy
nonlinear identification is then continued at the beginning of
the loop L, and the described procedure of finding the local
linear models that better fit to the process nonlinearity is
repeated.

If the unnormalized dataset D́ (4) is used for the identi-
fication, then the absolute distance δk, j (17) can, intuitively,
be normalized by the cluster’s output data z̃k, j to deal with
various static processes that meet different orders of the output
data magnitude. The cluster’s standard deviation of the error
σe j (17) then becomes very large if the cluster’s data are close
to zero. This tends to split the clusters of data that are close to
zero, even though they can be better modeled than some other
clusters of data that are far away from zero. For this reason,
the distances δk, j (k = 1, . . . , m j ) (17) of all the clusters
( j = 1, . . . , nc) should be normalized with the same value,
e.g., with the standard deviation (sparsity) of the output data
ź (4). Normalizing the original dataset D́ (4) that represents
a static nonlinear process has a similar effect as normalizing
the error distance δk, j (17) with the standard deviation of the
output data.

D. Terminating the Fuzzy Nonlinear Identification

If all the local linear models fit to the corresponding local
linear regions of the process well, the iterative part of the
fuzzy nonlinear identification is completed. This happens when
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the standard deviation of the error between the local linear
model and the corresponding cluster’s data σe j (17) is below
the threshold T (18) for all the clusters ( j = 1, . . . , nc).
If the maximum number of loop (L) executions is reached,
the identification procedure is also completed. By determining
when the number of local linear models stops increasing, the
LMN learning is supervised. Finally, the whole output model,
considering the original data set D́ (4), is computed as follows.
The result of the last execution of the GK fuzzy-clustering
algorithm needed for calculating the whole output model ẑ(úi )
(5) is the input space coordinates of the cluster centers cu j

( j = 1, . . . , nc) (13) and the corresponding fuzzy covariance
matrices of the input space data Pu j (13). To approximate the
original dataset D́ (4) with the output model ẑ(úi ) (5), first
the cluster centers cu j = (cx j , cy j ) and the fuzzy covariance
matrices Pu j must be converted to

ću j = (ρx ∗ cx j + mx , ρy ∗ cy j + my)

Ṕu j =
[

ρ2
x ∗ σ 2

x j
ρxρy ∗ σxy j

ρyρx ∗ σyx j ρ2
y ∗ σ 2

y j

]
, j = 1, . . . , nc (21)

which is the inverse of the transformation (6), where the
original data D́ (4) are centered and normalized. mx , my , ρx ,
and ρy are defined in (7) and (8). The Gaussian functions
μ́ j (úi ) for each cluster ( j = 1, . . . , nc) and all the data
(i = 1, . . . , n) are calculated with (12), where ui , cu j , and
Pu j are replaced with úi = (x́i , ýi ) and the above-defined
ću j and Ṕu j , respectively. The validity functions �́ j (úi ) are
calculated with (14), where μ j (ui ) is replaced with μ́ j (úi ).

Now the parameters of the local linear models for approxi-
mating the original process data D́ (4) can be computed. In the
final part of the identification procedure, these parameters are
found with a global learning approach [39]. The parameters
of all the local linear models are estimated with a single
regression operation, where all the data of the process are
considered.

The small factor γ (12) causes the fuzzy validity functions
�́ j (úi ). If the validity functions �́ j (úi ) are fuzzy, there is
some overlapping between the neighboring validity functions,
especially in the transit regions between the local models
[Fig. 5(b)]. In this case, the estimated parameters of the local
models depend on their neighboring local models. This can
cause the resulting local linear models not describing the
corresponding local regions of the nonlinear process very
accurately [Fig. 5(a)], even though these subregions are very
accurately described with the whole LMN model (1). If the
validity functions �́ j (úi ) are crisp (large parameter γ ), the
resulting local linear models [Fig. 5(a)] accurately describe
the corresponding subregions of the nonlinear process. But the
overall LMN model is then less accurate compared to the case
when fuzzy validity functions �́ j (úi ) are used. The parameter
γ is found empirically so that a compromise between the
accuracy of the local linear models and the accuracy of the
overall LMN model is reached.

The sum of all ( j = 1, . . . , nc) local linear models weighted
with their validity functions �́ j (úi ), taking into account all the
input space data úi (i = 1, . . . , n), tends to approximate the
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Fig. 5. Two LMNs. (a) Outputs and local models. (b) Crisp and fuzzy validity
functions.

outputs źi

źi =
nc∑

j=1

(a j x́i + b j ýi + c j )�́ j (úi ), i = 1, . . . , n (22)

which forms a system of n linear equations with 3 * nc
variables a j , b j , and c j ( j = 1, . . . , nc). The system is solved
by using the LS method and results in the parameters â j ,
b̂ j , and ĉ j ( j = 1, . . . , nc) of all local linear models. The
LMN model ẑ(úi ) considering all the input space data úi

(i = 1, . . . , n) is finally calculated with (5). The quality of the
whole LMN model is estimated as the standard deviation σz

(23) of the error between the centered and normalized output
generated from the model ži and the centered and normalized
output data zi (6)

σz =
√√√√ 1

n − 1

n∑

i=1

(ži − zi )
2, ži = ẑi − mz

ρz
(23)

where mz and ρz are defined in (7) and (8), respectively.
Since the normalized output data ži and zi (i = 1, . . . , n) are
considered in the equation above, σz represents the standard
deviation of the relative error between the original output from
the process źi (4) and the output generated from the model
ẑ(úi ) (5).

E. Key Features of the Proposed Algorithm

Many attributes of the proposed algorithm can be derived
from theoretical investigations. In the following, the key
attributes of the proposed algorithm are summarized.

1) Noise sensitivity: Generally, LMNs are robust against
noise [40]–[43]. All local models are locally estimated
with the weighted LS method. The local estimation has
an inherent regularization effect because of the overlaps
between the local models. The partitioning itself is
robust against noise because of two main reasons. Fuzzy
clustering itself is more robust against noise than hard
clustering [44], [45] and, furthermore, with the heuristic
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Algorithm 1 Pseudocode of the Iterative Identification
Algorithm
1: Transform all the process data.
2: Define initial prototypes: v1 = o + r1, v2 = −o + r2.
3: GK clustering using all the data results in cluster centers

c1 and c2, nc = 2.
4: While (End criteria is not met)
5: Compute � j (ui ), i = 1, . . . , n, j = 1, . . . , nc.
6: Compute â j , b̂ j , and ĉ j , j = 1, . . . , nc using local LS.
7: Compute σe j , j = 1, . . . , nc.
8: For the cluster with the largest σe j ( j = w) define initial

prototypes: vw,1 = cw + ow + rw,1, vw,2 = cw − ow

+rw,2.
9: GK clustering using only the splitting-cluster’s data

results in cluster centers cw,1 and cw,2.
10: Define initial prototypes: (v1, . . . , vw, vw+1, . . . , vncnew )

= (c1, . . . , cw,1, cw,2, . . . , cnc), ncnew = nc + 1.
11: GK clustering using all the data results in cluster centers

c j , j = 1, . . . , nc, nc = ncnew .
12: End While
13: Re-transform cu j and Pu j , j = 1, . . . , nc and use original

process data in what follows.
14: Compute �́ j (úi ), i = 1, . . . , n, j = 1, . . . , nc.
15: Compute â j , b̂ j , and ĉ j , j = 1, . . . , nc using global LS.
16: ẑ(úi ) = ∑nc

j=1(â j x́i + b̂ j ýi + ĉ j )�́ j (úi ), i = 1, . . . , n.

construction algorithm, well-suited initial values for the
covariance matrix optimization are provided.

2) Computational effort: In each iteration, the proposed
algorithm performs GK fuzzy clustering with two addi-
tional clusters. Therefore, the number of parameters of
each iteration increases by the size of the additional
fuzzy clustering covariance matrix. For each single
split, one covariance matrix is required. The covariance
matrices are of symmetric structure, i.e., for each split
(p + 1)(p + 2)/2, parameters (p = # inputs) have
to be optimized. According to [46], the computational
complexity of the GK clustering algorithm is considered
as O(n2), where n is the number of data. The proposed
identification algorithm is incrementally growing, so this
leads to fast training times. Although the training is slow
compared to greedy algorithms such as, e.g., Lolimot
[40], the training times are more or less equal compared
to product space clustering or even faster.

3) Data fitting: The partitioning with the new algorithm is
very flexible. This leads to an algorithm that is able to
cover with highly nonlinear process. Furthermore, due
to the flexibility the algorithm is well suited to model
processes with high dimensionality. Process nonlinear-
ities are covered efficiently as a result of the flexible
unsupervised product space clustering on the one hand
and the supervised tree construction algorithm on the
other [47], [48]. Besides the LS regression used in this
paper, the orthogonal LS method is also often applied
for model identification [49], [50].
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In addition to the theoretically derived attributes the next
section shows the performance of the proposed algorithm with
respect to nonlinear process data.

IV. RESULTS OF THE FUZZY NONLINEAR MODEL

IDENTIFICATION OF THE DRUG ABSORPTION

SPECTRA PROCESS

The fuzzy nonlinear model identification technique pro-
posed in this paper is tested on a 3-D absorbance–response
surface [51], which represents the multiwavelength absorption
spectra of the protonation equilibria of phenylephrine in terms
of the dependence on the pH. This defines a static process
with two inputs (pH and wavelength λ[nm]) and one output
(absorbance A), which is shown in Figs. 7 and 8(a). The data
matrix D́ (4) is of size n × 3, where n = 1056 is the number
of data.

The training of the LMN was performed with three different
partitioning algorithms. The algorithm that is proposed in
this paper is called Suhiclust, which stands for Supervised
Hierarchical Clustering. The second one is Lolimot [12].
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Fig. 8. (a) Normalized process data, (b) partitioning results of Suhiclust, (c) Lolimot, and (d) Hilomot. The complexity of the shown partitions is chosen
such that a training error of σz = 0.02 is achieved. Suhiclust is the most flexible approach in this comparison.

Lolimot produces axes-orthogonal splits. Therefore, the par-
titioning is less flexible than the partitioning with Suhiclust.
Furthermore, the process was modeled with an extension of the
Lolimot algorithm. Hilomot is a tree-construction algorithm
like Lolimot. In contrast to Lolimot, Hilomot generates a
LMN with axes-oblique partitioning which is realized with
sigmoidal splitting functions. As with Lolimot and Suhiclust,
Hilomot adds in each iteration one local linear model to
the overall model. The detailed functioning of Hilomot is
explained in [30].

The dataset D́ (4) representing the original process is
first normalized, as shown in (6), to obtain the dataset D,
which is shown in Fig. 8(a). Then the nonlinear identification
procedure is performed on the basis of the normalized process
data. The Suhiclust parameters are set to q = 0.125 (11)
and γ = 0.5 (12). The convergence behavior of the three
partitioning algorithms is shown in Fig. 6. The normalized
training error σz (23) is monotonically decreasing with all
investigated training algorithms. At each number of local
models, Suhiclust algorithm results in lower error σz than
Lolimot and Hilomot. The model complexity is chosen such
that an error less than σz = 0.02 is achieved (dotted line
in Fig. 6), which corresponds to the termination threshold
of the Suhiclust algorithm T = 0.05 (18). In this case,
Suhiclust requires 11 local models, Lolimot 18 local models,
and Hilomot 16 local models.

Fig. 8(b)–(d) shows the resulting partitions of the structure
identification procedure for Suhiclust, Lolimot, and Hilomot,
respectively. They illustrate the higher flexibility of the parti-
tioning with Suhiclust compared to Lolimot and Hilomot. Due
to the restriction of axes-orthogonal splitting, Lolimot needs
the largest number of local linear models in order to achieve
the given training error threshold of σz = 0.02. Although
Hilomot is able to produce a very flexible partition due to
the application of axes-oblique splits that are generated with
sigmoidal splitting functions, Hilomot requires only two local
models less than Lolimot to achieve the goal. The normalized
Gaussian membership functions � j (ui ) (14), generated with
Suhiclust, are even more flexible than the validity functions
of Hilomot. This leads to the most effective LMN structure in
this comparison.

The generalization behavior of the model can be monitored
visually in a 3-D plot, because the process has no more than
two input dimensions. Although the model complexity with 11
local models is quite low, the model generated with Suhiclust
shows good modeling results as illustrated in Figs. 6 and 7.

V. CONCLUSION

In this paper, a new fuzzy nonlinear identification technique
in the framework of a LMN was presented. In order to
construct the LMN, a new incremental approach for defining
the number and the initial locations of the cluster centers for
the GK fuzzy clustering was proposed. In each iteration of
the identification algorithm, the worst modeled cluster was
split into two new clusters. Two initial prototypes for the
GK clustering were placed away from the splitting cluster’s
center to embrace the majority of the splitting cluster’s data in
the direction of the main data expansion. This direction was
defined with the largest eigenvector of the splitting cluster’s
fuzzy covariance matrix.

The validity functions were defined with the fuzzy covari-
ance matrices of the clusters obtained with the GK algorithm
and for this reason they were highly adaptable to the local
linear regions of the nonlinear process. In this way, an axes-
flexible partitioning of the input space was achieved and there-
fore the process can be described with a very sparse amount of
local models, which leads to a parsimonious LMN structure.
The proposed fuzzy nonlinear identification technique and two
other methods for constructing the LMNs, i.e., Lolimot [12]
and Hilomot [30], were tested on the drug absorption spectra
process. The experimental comparison illustrates the higher
adaptability of partitioning with the proposed algorithm com-
pared to Lolimot and Hilomot.
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